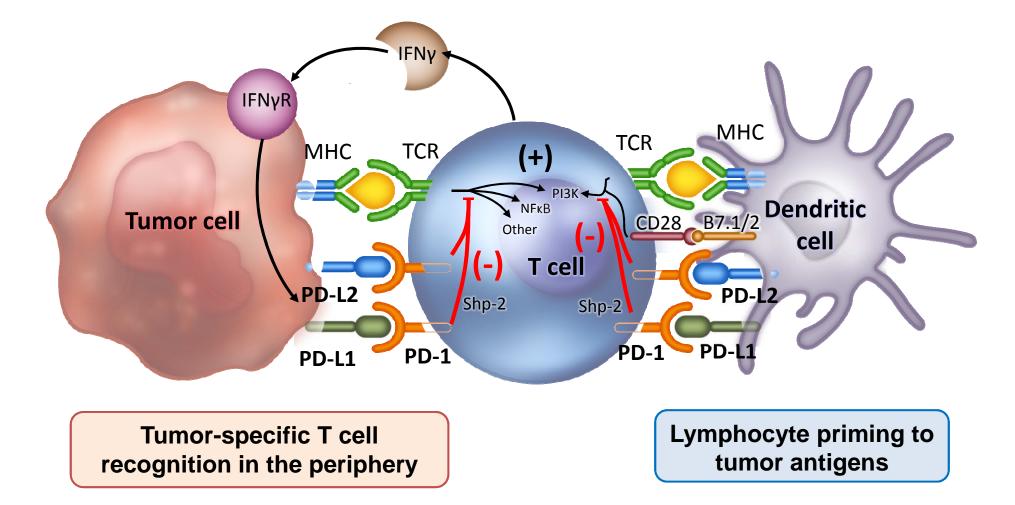
BIOMARKERS AND CLINICAL CHARACTERISTICS OF RESPONSE TO PD-1 IMMUNE CHECKPOINT BLOCKADE IN NON-SMALL CELL LUNG CANCER

Julie R. Brahmer, M.D., M.Sc. Associate Professor of Oncology Director of the Thoracic Oncology Program


Disclosures

Julie R. Brahmer, M.D., M.Sc.

- Merck, Consultant/Advisor
- Bristol Myers-Squibb, (non-compensated), Consultant/Advisor
- Bristol Myers Squibb, Grant/Research Funding
- Merck, Grant/Research Funding
- AstraZeneca, Grant/Research Funding

Role of the PD-1 pathway in suppressing anti-tumor immunity

Pretreated NSCLC – Phase I Trials

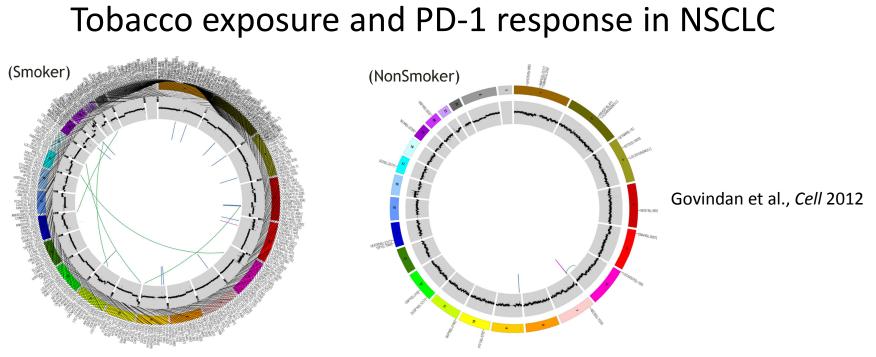
Regimens	Subgroup,	n	ORR⁺, %	Median PFS (mo)	Median OS (mo)
Pembrolizumab ¹ (N=217)	10 mg/kg q 3wk	126	21	2.5	8.2
Nivolumab ² (N=129)	3 mg/kg q 2wk 37		24	1.9	14.9
MEDI4736 ³ (N=155)	10 mg/kg q 2wk	150	15	NR	NR
MPDL-3280a ⁴ (N=53)	Multiple doses	53	23	NR	NR

1. Garon, et al. Poster. ASCO 2014 (abstr 8020). 2. Brahmer, et al. Poster. ASCO 2014 (abstr 8112). 3. Antonio S, et al. Poster. ESMO 2014 (abstr 7629) 4. Soria J et al Presentation ECC 2013.

Who is Most Likely to Respond?

Lessons From the Trials

Nivolumab ORR by Select Patient Characteristics

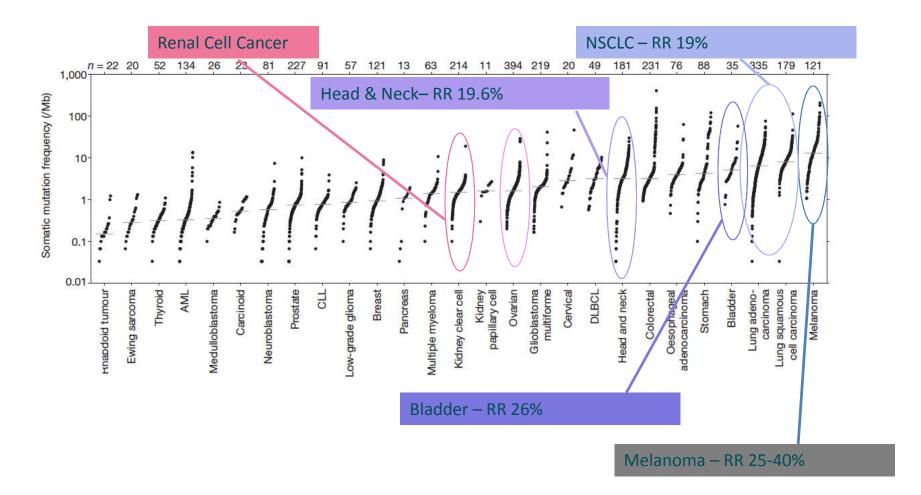

Subgroup	ORR, % (n/N) [95% CI]ª	Subgroup	ORR, % (n/N) [95% C			
Age		Number of prior therapies				
<70 yr ≥70 yr	17 (15/90) [10, 26] 18 (7/39) [8, 34]	<3 ≥3	12 (7/59) [5, 23] 21 (15/70) [13, 33			
Sex		EGFR status				
Female Male	18 (9/50) [9, 31] 17 (13/79), [9, 27]	Mutant Wild-type	17 (2/12) [2, 48] 20 (11/56) [10, 32			
ECOG PS		KRAS status				
0 1-2	11 (3/27) [2, 29] 19 (19/102) [12, 28]	Mutant Wild-type	14 (3/21) [3, 36] 25 (9/36) [12, 42]			
Histology		<u></u>				
Squamous Non-squamous	17 (9/54) [8, 29] 18 (13/74) [10, 28]					

Pembrolizumab Activity by Select Patient Characteristics

	N	ORRª % (95% CI)		N	ORRª % (95% CI)
Total	236	21 (16-27)	Dose/schedule	236	
Previous treatment	236		2 Q3W	6	33 (4-78)
Treatment naive	42	26 (14-42)	10 Q3W	126	21 (14-29)
Previously treated	194	20 (15-26)	10 Q2W	104	21 (14-30)
Histology	230		PD-L1 expression ^b	236	
Nonsquamous	191	23 (17-29)	Positive	201	23 (18-30)
Squamous	39	18 (8-34)	Negative	35	9 (2-23)
Smoking history	230		EGRFR mutation	36	14 (5-30)
Current/Former	165	27 (20-34)	KRAS mutation	39	28 (15-45)
Never	65	9 (4-19)	ALK rearrangement	6	17 (0-64)

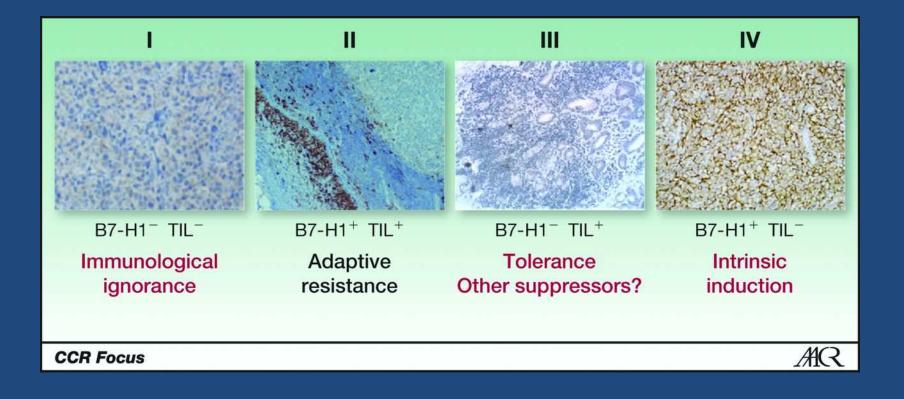
^aIncludes confirmed and unconfirmed responses.

^bAs assessed using a prototype assay. Positive was defined as staining in ≥1% of tumor cells. Analysis cutoff date: March 3, 2014.

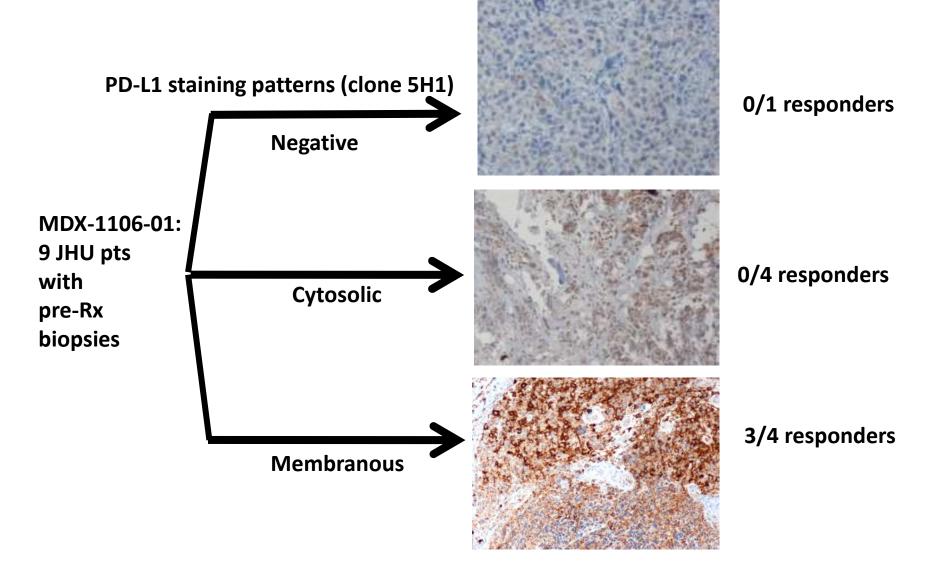


	Smokers or Ex-smokers	Never smokers	
Pembrolizumab	33/129 (26%)	5/60 (8%)	Garon et al, ASCO 2014
MPDL3280A	11/43 (26%)	1/10 (10%)	Soria et al, WCLC 2013
Nivolumab	20/75 (26%)	0/13 (0%)	Hellman et al, ESMO 2014

? Potential surrogate marker for mutational density?

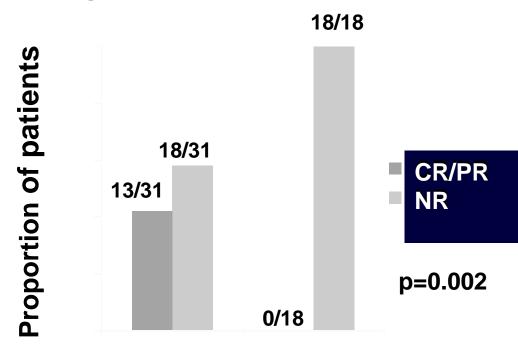

Adapted from Rizvi N ,2014

Can mutation burden help select for patients more likely to respond to immunotherapy ?

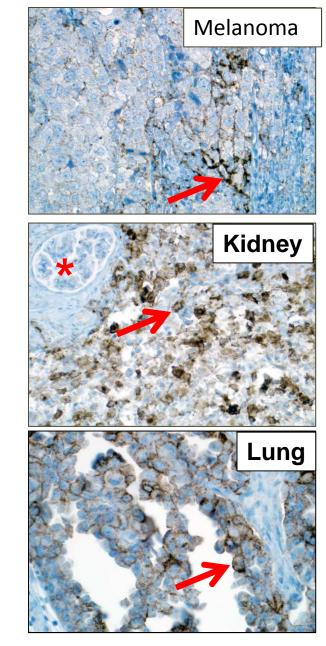


Adapted from Alexandrov et al., Nature 2013

PD-L1 (B7-H1) Expression and Inflammation: Implications for Mechanisms and Therapy



Expression of PD-L1: Required for Clinical Response to PD-1 Blockade? Initial Information from the First in Human Trial of Nivolumab

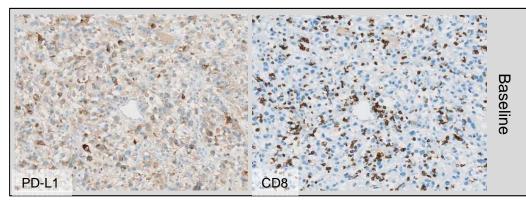


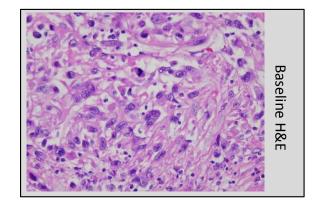
J. Taube and S. Topalian, Brahmer J et al JCO 2010

Preliminary molecular marker studies: Correlation of PD-L1 expression in pretreatment tumor biopsies with clinical response to anti-PD-1

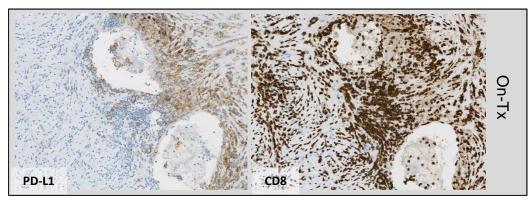
49 patients include 20 with melanoma,13 NSCLC, 7 colon, 6 kidney, and 3 prostate cancer.

* Normal renal glomerulus

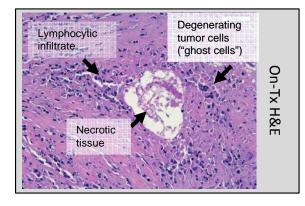

Topalian S and Taube J, 2013


Relationship Between PreRx Tumor Microenvironment and Clinical Response to Nivolumab

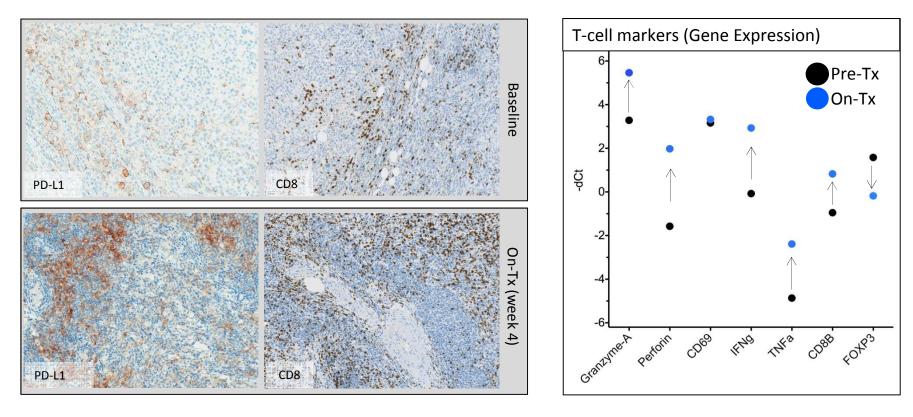
		Obj	ective resp	onse ^b	Clinical benefit ^c		
Pathologic parameter (number of patients analyzed)	All patients <i>n</i> (%)	Non (%)	Yesn (%)	P value ^d	Non (%)	Yesn (%)	P value ^d
Tumor PD-L1 expression ($n = 41$)	e						
Absent	18 (44)	17 (94)	1 (6)	0.025	17 (94)	1 (6)	0.005
Present	23 (56)	14 (61)	9 (39)		12 (52)	11 (48)	
Immune cell infiltrate PD-L1 expre	ession $(n = 41)^{e}$						
Absent	18 (44)	16 (89)	2 (11)	0.142	16 (89)	2 (11)	0.038
Present	23 (56)	15 (65)	8 (35)		13 (57)	10 (43)	


- Included NSCLC, RCC, melanoma, CRPC, Colon CA tumors
- PD-L1 positivity defined as <a>> 5% membranous staining by IHC 5H1 Ab
- Presence of TIL, PD-L2 expression, CD4:CD8 ratio, CD 20 B-cell, lymphoid aggregates, necrosis, small sample size, or time from Bx to treatment was NOT associated with response

Serial Biopsy in a PD-L1–Positive RCC Patient With a Rapid Response to MPDL3280A



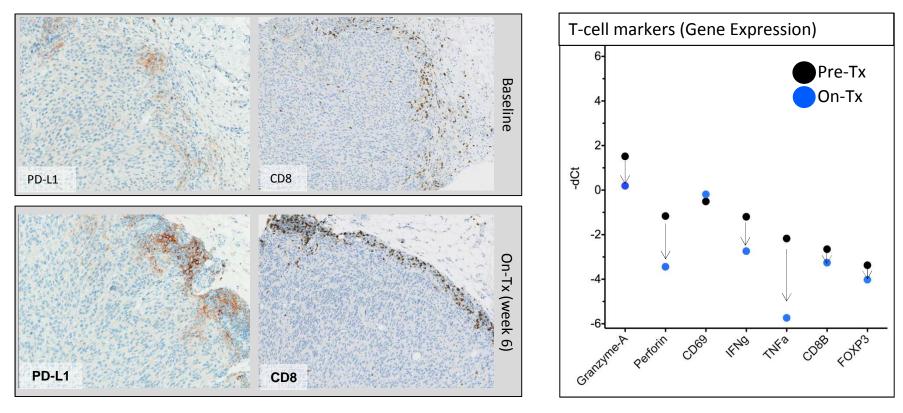
Biomarkers at baseline: PD-L1 positive CD8+ T cells present



Biomarkers at week 4 post C1D1: PD-L1 positive Increased CD8+ T-cell infiltrate

On-treatment H&E: dense lymphocytic infiltrate and *no viable* tumor cells seen

MPDL3280A Leads to Increased T-cell Activation in PD-L1– Positive Patient Responding to Treatment


Possible MoA of response to MPDL3280A:

- Pre-existing intra-tumoral CD8+ T cells
- Increased trafficking or proliferation of intra-tumoral CD8+ cells
- Increased T-cell activation and cytotoxicity (e.g., Granzymes and Perforin production)

Powderly J et al ASCO 2013

Yale Cancer Center (Kluger/Herbst).

PD-L1–Negative Patient Not Responding to MPDL3280A Exhibits Low Frequency of Intratumoral T cells

Possible MoA of resistance:

- CD8+ T cells remain at the edge of the tumor (possible impaired trafficking)
- No increase in T-cell cytotoxicity
- No T-cell recognition of cancer antigens in this patient

Pretreated NSCLC – Phase I Trials Activity by PD-L1 Staining

Regimens	Subgroup,	n	ORR⁺, %	Median PFS (mo)	Median OS (mo)
	10 mg/kg q 3wk	126	21	3.25	8.2
Pembrolizumab ¹ (N=217)	PD-L1+	201	23	2.75	NR
	PD-L1 -	35	9	2.5	NR
	3 mg/kg q 2wk	37	24	1.9	14.9
Nivolumab ² (N=129)	PD-L1 +	33	15	3.6	7.8
	PD-L1 -	35	14	1.8	10.5
	10 mg/kg q 2wk	150	15	NR	NR
MEDI4736 ³	PD-L1 + 47		26	NR	NR
(N=155)	PD-L1 -	74	10	NR	NR

1. Garon, et al. Presentation. ESMO 2014 ...2. Brahmer, et al. Poster. ASCO 2014 (abstr 8112). 3. Antonio S, et al. Poster. ESMO 2014 (abstr 7629).

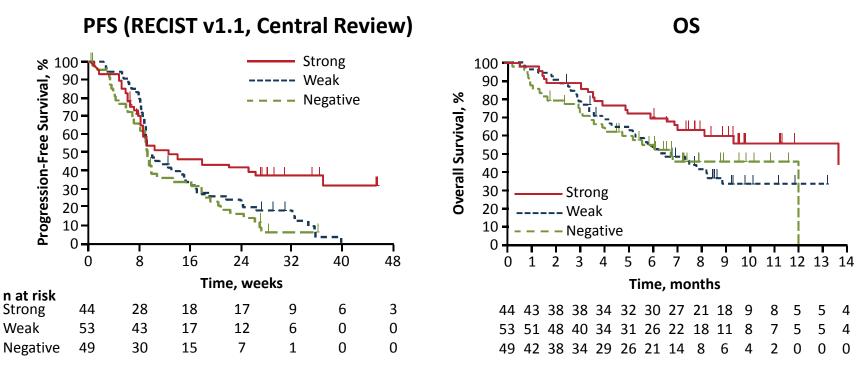
PD-L1 as a biomarker in NSCLCs


Drug	Nivolumab		Pembrolizumab			MPDL3280A			MEDI4736	
Assay	28-8		22C3					SP263		
Cells scored	Tumor cell membrane		Tumor cell (and stroma)			Infiltrating immune cells			Tumor cell membrane	
Tissue	Archival		Recent		Arch./Recent			Arch./Recent		
Setting	1 st line	2L	++	1 st line 2L ++		2L ++			2L ++	
Cut- point	5%	1%	5%	1%	1% 50%		1%	5%	10%	NR
ORR in PD-L1 +	31% N=26	13% N=38	15% N=33	26-47% N=45			31% N=26	46% N=13	83% N=6	26% N=47
ORR in PD-L1 -	10% N=21	17% N=30	14% N=35	???	0.120/ 110/		20% N=20	18% N=40	18% N=40	10% N=74

Daud, AACR 2014 Ghandi, AACR 2014 Rizvi, ASCO 2014, #8009 Garon, ESMA 2014 Hamid, ASCO 2013, #9010 Herbst, ASCO 2013, #3000 Powderly, ASCO 2013, #3001 Spigel, ASCO 2013, #8008

9624 Gegal, ASCO 2014, #3002 Brahmer, SITC 2014

Pembrolizumab Response Rate by Level of PD-L1 Expression (RECIST 1.1, Central Review)



- Strong PD-L1 expression: defined as ≥50% membranous staining in tumor cells

- Weak PD-L1 expression: defined as 1-49% membranous staining in tumor cells

^aEvaluable patients were those patients in the training set with evaluable tumor PD-L1 expression who had measurable disease at baseline per imaging assessment criteria. Analysis cut-off date: March 3, 2014. Garon E et al, ESMO 2014

Pembrolizumab Kaplan-Meier Estimates of Survival by PD-L1 Staining Status

- PFS was longer in patients with PD-L1 strong-positive versus PD-L1 weak-positive/ negative tumors (HR, 0.52; 95% CI, 0.33-0.80)
- OS was longer in patients with PD-L1 strong-positive versus PD-L1 weak-positive/ negative tumors (HR, 0.59; 95% CI, 0.35-0.99)

^aEvaluable patients were those patients in the training set with evaluable tumor PD-L1 expression.

Strong PD-L1 positivity defined as staining in ≥50% of tumor cells, and weak PD-L1 positivity as staining in 1-49% of tumor cells. Negative staining is no PD-L1 staining in tumor cells.

Issues with Assay Methodology

- Bx type Excisional versus core versus FNA
- <u>Addressing heterogeneity</u> multiple tumors and multiple passes within a tumor
- Interval between biopsy and treatment effect of other therapies
- Primary versus metastatic disease
- <u>Antibody</u> and staining conditions
- Frozen versus FFPE tissue
- Automated versus 'manual' read
- Defining a positive result (cut-offs):
 - <u>Cell type expressing PD-L1 (immune cell versus tumor or both)</u>
 - Presence or absence of T-cells near PD-L1 expression
 - Location of expression cell surface versus intracellular
 - intensity
 - Distribution patchy versus diffuse, intratumoral versus peripheral
 - percent of cells 'positive'

Multiple Current Trials of PD-1 or PD-L1 inhibitors in Stage 4 NSCLC

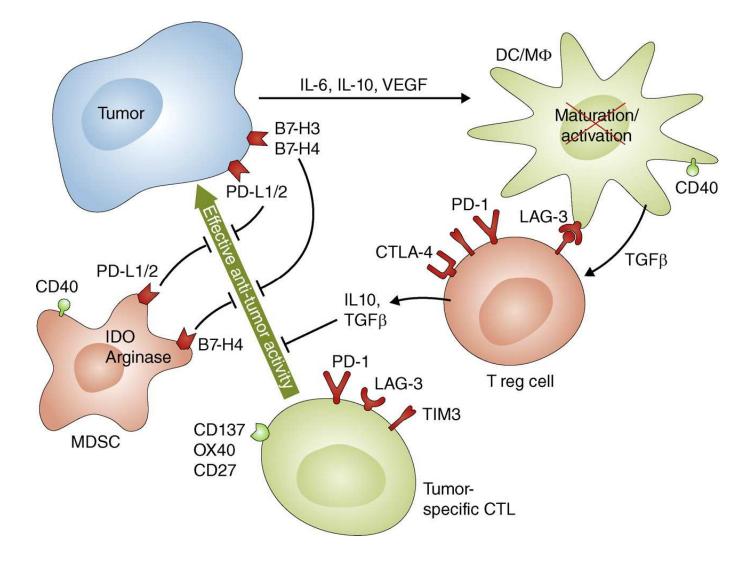
- First Line Trials PD-L1 + disease (ds)
 - Chemo vs. PD-1 Ab (Pembro and Nivo trials ongoing)

Second Line Trials

- Nivolumab vs. docetaxel in either Squam or Nonsquam
 - both trials completed enrollment
- Pembrolizumab vs. docetaxel in PD-L1 positive ds
- MPDL-3280a vs. docetaxel

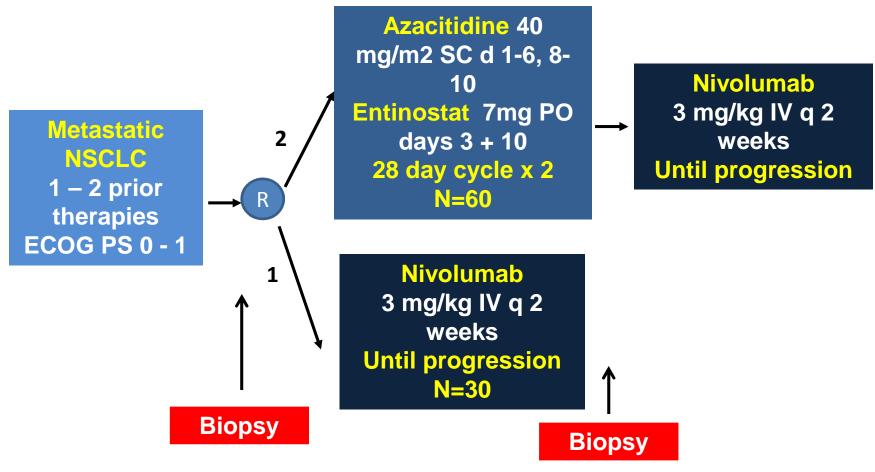
• Beyond 2nd Line

- MEDI-3476 vs. dealers choice chemotherapy
- MPDL-3280a in PD-L1 positive ds
- Phase 1s of combination therapies or expansion cohorts ongoing with other PD-L1 Abs



OHNS HOPKINS

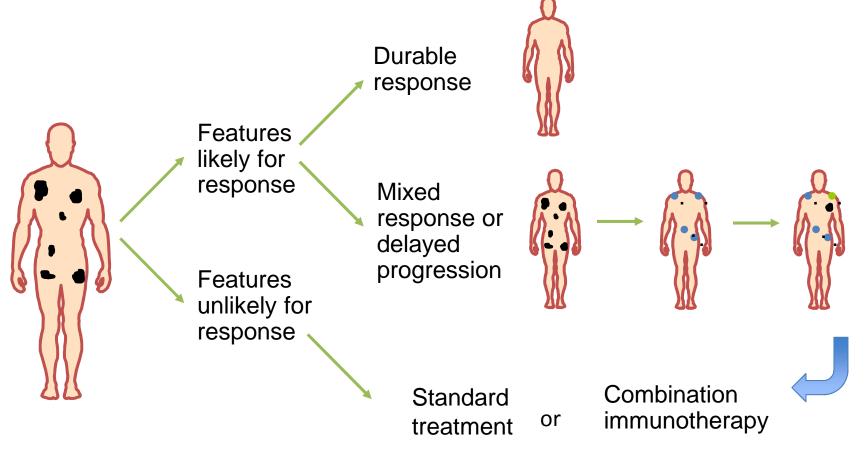
How Can We Increase the Response Rate in Those Less Likely to Respond?


Multiple immune inhibitory and co-stimulatory pathways in the tumor microenvironment are targets of therapeutic manipulation by antibodies or drugs.

How does one turn a non-inflamed, PDL1 negative tumor into a immune responsive tumor?

- SRS
- Molecularly targeted therapy
- Tumor based vaccine
- CAR T cells or other modified T cells
- Epigenetic therapy

Epigenetic Priming of Immunotherapy



Primary endpoint – PFS rate at 32 weeks

Secondary endpoints – RR, PFS, TTP, OS, safety, lab correlates

Cancer Management in the Anti–PD-1/PD-L1 Era – The need for Personalized Immunotherapy

Adapted from Rizvi N, LALCA 2014

Conclusions

- PD-1/PD-L1 checkpoint inhibitors have promising activity in NSCLC
- Patient selection (biomarker) is being evaluated
- While PD-L1 positivity may be associated with a higher likelihood of response, it is not the complete answer
- Smoking status may predict response just as well
- The future of immunotherapy in NSCLC may be in determining the mechanism of immune evasion in each patient

EDICIN

Lessons and Take Home Messages

- Key points
 - Former or Current Smokers with lung cancer have a higher RR to PD-1 checkpoint blockade
 - PD-L1 positive tumors are associated with higher RR to PD-1 checkpoint blockade
 - PD-L1 positivity is not the perfect biomarker of response
- Potential impact on the field
 - Continued investigation for a biomarker of response to checkpoint blockade is needed
- Lessons learned
 - Biomarkers of response are needed
 - Cross validation of current PD-L1 testing techniques is needed if used for patient selection in the clinic

INS HOPKINS